
J .  Fluid Mech. (1979), vol. 95, part 4, pp.  779-786 

Printed in  Great Britain 

779 

Convective instability of self-similar spherical 
expansion into a vacuum 

By D. L. BOOK 
Laboratory for Computational Physics, U.S. Naval 

Research Laboratory, Washington, DC 20375. 

(Received 22 August 1978 and in revised form 8 May 1979) 

The well-known class of self-similar solutions for an ideal polytropic gas sphere of 
radius R(t) expanding into a vacuum with velocity u(r,t)  = r&/R is shown to be 
convectively unstable. The physical mechanism results from the buoyancy force 
experienced by anisentropic distributions in the inertial (effective gravitational) field. 
An equation for the perturbed displacement P(r, t ) ,  derived from the linearized fluid 
equations in Lagrangian co-ordinates, is solved by separation of variables. Because 
the basic state is non-steady, the perturbations do not grow exponentially, but can be 
expressed in terms of hypergeometric functions. For initial density profiles 

P o(r) - (1  - r2/rp, 

modes with angular dependence KnL(O,  4) are unstable provided 1 > 0 and K < l/(y - i),  
where y is the ratio of specific heats. For large 1, the characteristic growth time of the 
perturbations varies as I d  and the amplification increases exponentially as a function 
of 1. The radial eigenfunctions are proportional to r’, and the compressibility and 
vorticity are both non-zero. 

1. Introduction 
Over a quarter century has passed since the discovery of a variety of self-similar 

solutions of the equations of one-dimensional ideal fluid motion, describing non-steady 
expansion and contraction. These were found independently and more or less simul- 
taneously by Sedov (1953), Staniukovich (1949), Taylor (1950) and others, stimulated 
by interest in nuclear and astrophysical explosions and in the general properties of 
gasdynamic systems. The usefulness of these solutions is twofold : they correctly 
describe one-dimensional flows at late times when the details of initiation or pre- 
paration have been ‘forgotten’, and they are analytic, or at least reduce the solution 
to quadratures. 

A particularly useful and interesting type of self-similar motion is that known as 
uniform or homogeneous. Its characteristic feature is a radial velocity which is pro- 
portional to the distance from the centre of symmetry. Most applications have been 
to problems with spherical symmetry, such as supernova explosions (Keller 1956), 
laser implosions (Kidder 1976) and self-gravitating clouds (Sedov 1959). Closely 
related to the latter are cosmological models in the non-relativistic limit (Weinberg 
1972), which are distinctive by virtue of being pressureless and unbounded. 

Sedov (1959) distinguishes three types of uniform self-similar motion in an ideal 
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gas. In  type I, the radius varies between 0 and co. In  type 11, it varies between 0 and 
a finite maximum value, corresponding to a turning point. Type 111, to which we 
restrict ourselves in the present work, has radius varying between a minimum (at a 
turning point) and 00. We follow Keller (1956) in using Lagrangian co-ordinates to 
derive in $ 2 a two-parameter family of solutions including, among others, isothermal 
and uniform-density models as special cases. There seems a t  first glance no reason 
why these should not be stable, and indeed in the literature where applications are 
made (e.g. Zel’dovich & Raizer 1966) the possibility has apparently not been con- 
sidered before. We go on in $3,  however, to argue that instability should arise whenever 
a condition is satisfied, equivalent to the presence of an entropy density which decreases 
outward. Physically the mechanism is identical with that responsible for convective 
instability in static stratified media when the temperature decreases in the upward 
direction. Analysis of the linearized fluid equations in $ 4 using the techniques 
developed by Bernstein & Book (1978) and Book (1978) confirms the existence of the 
instability and yields both the space and time dependence of the perturbations in 
closed form. 

As was previously noted by Bernstein & Book (1978) and Book & Bernstein (1979), 
the usual definition of stability is inadequate when applied to non-steady states, since 
the time dependence of the perturbations is in general not exponential. It is appropriate 
to call a mode stable (unstable) if the relative amplification, i.e. the ratio of the per- 
turbation amplitude to that of the basic state, vanishes (diverges) a8 t+a. We find 
that in the present case the ratio is in general finite because the acceleration responsible 
for the growth of ‘unstable’ perturbations vanishes as It1 +a. Thus the system is 
effectively destabilized only for a finite time. However, the relative amplification can 
be made arbitrarily large in unstable systems by choice of sufficiently large mode 
number. 

The paper concludes in $ 5 with a brief discussion of the results. 

2. The basic state 
We start with the equations of ideal hydrodynamics which in Lagrangian variables 

take the form p+v.vp = 0, ( 2 . 1 4  

p + + v p  = 0 ( 2 . l b )  

and (pp-7). = 0. ( 2 . l c )  

Here dots denote time derivatives and y in (2 .1  c )  is the ratio of specific heats. 
In  a spherically symmetric system, (2.1 a, b )  become 

and 

a 
P + p R - 2 - ( R 2 ~ )  = 0 

aR 

pZi+= aP = 0. 

( 2 . 2 ~ )  

( 2 . 2 b )  

For a motion of the type known as homogeneous (or uniform) self-similar flow (Sedov 
1959), the position R a t  time t of a fluid element whose position at t = 0 was r is required 
to satisfy 
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wheref(0) = 1 andf(0) = 0. The continuity equation (2.2a) then yields 

~ ( r ,  t )  = p o ( W 3 ,  (2.4) 

(2.5) 

POW = P(1- r2/rt)", (2.6) 

and hence from the adiabatic law (2.1 c )  

p ( r ,  t )  = p o ( r ) f 3 Y  = s(r) plf-37, 

with the entropy function s arbitrary. We choose the initial density profile in the form 

where j3 and K are constants. The density is then uniform for K = 0, and becomes more 
and more strongly peaked at  r = 0 as K increases. It follows from (2.1 b )  that 

We will use the separation constant 7,  the initial radius ro, and the peak mass density 
j? to rescale t ,  r and p, respectively. In  these reduced variables we have 

po = (1 - r2y,  

po = (1 - Y2)"+1/2(K + 1) 

(2 .9)  

(2.10) 

and f f 3 Y - 2  = 1.  (2.11) 

A quadrature can be performed on (2.1 I), with the result 

f 2  = 21nf 
i f y  = 1 (the isothermal case), and 

(2.12) 

f 2  = ( 2 / 4  (1 -f-9 (2.13) 

otherwise, where Q = 3(y-  1). If y = 9, (2.13) can be integrated directly to give 
f ( t )  = f (1 +tz )4 .  For other values of y the solution is most conveniently found by 
numerical means. At large It1 when f-+ 0, the motion asymptotically approaches free 
streaming. As a function of the parameters K and y, the solutions include the cases 
of uniform density and quadratic pressure, K = 0, and uniform entropy density, 
K = l/(y-- 1). If we exclude singular density profiles, K is restricted to 0 < K < a. 
The other parameter is y ,  which must lie in the range 1 < y c 00. 

3. Physical mechanism for instability 
A t  time t a small volume A V  of fluid initially located at radius r contains a mass 

Am = po(r)  A Vf-3, subjected to a pressure p = (1 - r 2 ) " f 1 / [ 2 ( ~  + l)f3y]. Consider two 
such fluid elements initially at radii rl and r2 > rl, whose volumes are related by 

AKJAq = (pl/p2)117 = [( 1 - r:)/(  1 - ~3]("+')'7. (3.1) 

This choice is made so that, after adiabatically interchanging positions, the two 
elements will be in pressure balance with the surrounding medium. The compressional 
energy associated with these elements is 

w, = (1)1AK+P)2AQ/(Y- 1). (3 .2)  
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Their kinetic energy calculated from the expansion or contraction of the sphere is 

w k  = Q(Am,u:+Am,ui). (3.3) 

Because the state is non-steady ( f f  0) ,  the elements are subject to an effective 
inertial force, derivable from a potential. The local acceleration in the laboratory 
frame is g = rf = Rf/f, and therefore the effective potential energy can be written 

l f  
W, = - - (Amlr;+Am2rE). (3.4) 

2 f  

Now let the two fluid elements interchange positions. By (3.1), they contract or 
expand so as to satisfy local pressure balance after the interchange. Furthermore, the 
work done in compressing one is just balanced by that done by the expansion of the 
other, so the compressional energy W; afterwards is equal to W,. The net change in 
energy is then 

6w= w~+w;+w~-wp-wk-wg 
= a[Am, ug + Am2 u: - Am, u: - Am, ui] + 4 f f [Am, r i  + Am, r ;  - Aml r: - Am,ri] 

= &(fz +jf) (r; - r t )  (Am, - Am,). (3.5) 

The first and second factors in the last member of (3.5) are strictly positive. The third 
factor, on the other hand, is proportional to 

This expression is negative for K < l/(y - 1). In  this case, therefore, the interchange 
reduces the total system energy. We thus anticipate that an instability will set in, 
characterized by ‘overturning’ of the profiles, such as is typically seen in convective 
or thermal instabilities of static media (Landau & Lifshitz 1959). 

When K < l/(y- l) ,  SW > 0, in which case no instability should arise. By (2.5), 
the entropy function s satisfies 

(3.7) 

The stable (unstable) case corresponds to outward increasing (decreasing) s(r ) .  The 
marginal case just corresponds to isentropic - more properly, homentropic - states. 
Evidently the physical picture here is analogous to that arising in connexion with 
instabilities driven by a temperature inversion in a medium with a stratified density. 
Destabilization takes place owing to the buoyancy experienced by fluid elements in 
the non-uniform inertial gravity field. It is therefore purely a consequence of the 
non-steady character of the basic state. 

s ( r )  = (1 - r2)K+1-Ky. 

4. Analysis of the perturbed equations 
We follow Bernstein & Book (1978) andBook (1978) in obtaining linearizedequations 

for the development of a small perturbation about the solutions of Q 2. For simplicity 
we consider only expanding states (t > 0). The perturbed displaccment g satisfies the 
linearized form of (2 . lb) ,  

&+p,i i .  = - v R I ) ~ + v R ~ . v R ~ .  (4.1) 
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Substituting the perturbed density from 

and the perturbed pressure from 
P1 = - PV, -5, 

andnoting that R and r are related by (2.3), we obtain (writing V = 0,) 

(4.4) 

Letting a = V .5 andw = V x 5, we have, on taking the divergence and curl of (4.4), 

ja+2c+ = Yv. [(I - r2)va] -  y r  .vV- (3y- 2 )  c-r+ r . V  x w  (4.5) 
2 ( K  f 1 )  

and 

We look for solutions of (4.5)-(4.6), assuming5 is separable into a product of a function 
of position and a factor T(t) satisfying 

f a+2T = pT, (4.7) 

p constant. We further assume separation of the angular and radial dependence by 
writing 

In (4.5) w appears only in the form r . V x w, for which an expression in terms of a 
can be derived from (4.6) and (4.8): 

1 - (y -  1 ) K  

K +  1 
( p - 1 ) r . V x w  = [ 2 r .  V g  + rr : VVa- r2V2u] 

= g [ 1 - ( y - 1 ) K ] 1 ( 1 + 1 ) / ( K - k 1 ) .  (4.9) 

Substitution in (4.5) yields a second-order equation for the radial factor a@), 

Rewriting this equation by means of the substitutions CT = fly and x = r2, we obtain 

x(1-x)y"+[c-(a+b+ l)x]y'-uby = 0, (4.11) 

(4.12 a, b )  

c = I + # .  (4.12~) 

the hypergeometric equation 

a] = : { K + z + ~ + [ ( K + z + ~ ) 2 - 4 K ] t } ,  b 
where 

Here (4.13) 

The solution of (4.11) which is finite at the origin is the hypergeometric function 
y = 2Fl(u,b;c;x). 
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The boundary condition is found from the requirement that the perturbed pressure 
vanish on the interface with the vacuum. Since the unperturbed pressure already 
vanishes there, it follows from (3.3) that y need only be finite a t  x = 1. The linear 
connexion formulas (e.g. Abramowitz & Stegun 1964) contain a term that diverges as 
(1 - x ) - ( ~ + ~ )  unless a or b is a non-positive integer. Thus we must have 

- n = &{K + 2 + 5 - [ ( K  + I? + 8)2 - 4K]3), (4.14) 

n = 0,1 ,2 ,  ... . Treating n and K as analytic functions of p and differentiating (4.14) 
yields anlap < 0. Hence the fastest growth (largest p > 1) corresponds to the smallest 
value of n, viz., n = 0, which implies K = 0. Solving for p, we finally obtain the 
dispersion relation 

p - l = -  Y l ( K +  2)$ ( K +  1) (37'- 1) 
2 ( K +  1) 

+ {rm + 2 )  + ( K  + 1) ( 3 ~ -  1)i2 + 410 + 1)  (K  + 1 - KYP. (4. 15) 
2 ( K  -I- 1) 

- 

For the upper branch, p > 1 for all I > 0, provided K c l / ( y  - 1) .  The latter is precisely 
the condition derived from the energetic argument of 5 3. 

Returning to (4.7), we find that, provided y > 1, the time dependence can likewise 
be expressed in terms of hypergeometric functions in the form (Bernstein & Book 

T(t)  = T(0) %-(t) +P(O) q t ) .  (4.16) 1978) 

Here, (4.17a) 

and A = [(a+ 2)2- 8pa]*. For late times (largef), the linear connexion formulas yield 

(4.18b) 

The numerical coefficients in (4.18) grow exponentially with p for p 9 1. The case of 
y = 1 is very similar, except that confluent hypergeometric functions replace 2Fl, as 
observed by Bernstein & Book (1978) and Book & Bernstein (1979), and (4.18) is 
replaced by expressions proportional to f (Inf)a(P-l). 

5. Discussion 
We have seen on energetic grounds that a certain class of spherical ideal gas expan- 

sions can be expected to be unstable whenever the gradient of the entropy density 
decreases with increasing r .  Detailed analysis of the linear perturbations about these 
non-steady basic states confirms this prediction, provided we appropriately generalize 
the usual definition of instability. Somewhat surprisingly, the solutions fall out 
exactly without recourse to numerical approximations, owing to the separability in 
Lagrangian variables of the linearized equations. 
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As noted in Q 1, what matters in determining the stability of a time-dependent 
motion is the relative size of the perturbations. By (4.18), the latter vary asymptotically 
like the unperturbed radius. At early times, however, whenf differs substantially from 
zero, the perturbations can be amplified dramatically. If p 9 I, they grow approxi- 
mately exponentially for t 5 1, experiencing w pi e-foldings. The total amplification 
and the time required to approach the asymptotic state both increase with p. As 
y + l ,  both the total amplification and the time required to approach saturation 
diverge (Bernstein & Book 1978). Since p increases with increasing I ,  decreasing K ,  

and decreasing y, all of these trends tend to enhance instability. 
Note that, as l-tco, p diverges. This implies that the problem is mathematically 

well posed only for sufficiently smooth initial perturbations. In any real physical 
system, however, dissipative phenomena related to viscosity, thermal conduction, 
radiation, etc. set an upper limit on the mode number for which the ideal fluid model 
is valid. For shorter-wavelength disturbances than this, not only the detailed per- 
turbation analysis, but the whole physical picture must be drastically different. 

The perturbations studied here have radial dependence which peaks at  r = ro. 
They therefore should be most readily observable as an enhanced mixing or turbulence 
near the periphery of the expanding cloud. Since the instability is controlled by the 
sign of the entropy gradient, it seems likely that the nonlinear limit to which it tends 
is characterized by dsldr  3 0, 0 6 r < ro. Whether this limit is actually attained is 
beyond the scope of the present work. 

Another, perhaps more important, question remains unanswered. Uniform self- 
similar motion is an analytically convenient model used to approximate real flows. 
To what extent is the instability treated here associated with the latter, to what 
extent an artifact of the model? The present paper can of course provide no rigorous 
answer. Nonetheless, it seems physically plausible that, for flows sufficiently close to 
uniform expansion, the results of the present analysis must be applicable. Even for 
non-uniform motions, either analytically or numerically described, the energetic 
argument of Q 3 can be employed and should again correctly predict the presence or 
absence of instability. 
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